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Differences among the database representations of
clinical data are a major barrier to the integration of
databases and to the sharing of decision-support
applications across databases. Prior research on
resolving data heterogeneity has not addressed
specifically the types of mismatches found in various
timestamping approaches for clinical data. Such
temporal mismatches, which include time-unit
differences among timestamps, must be overcome
before many applications can use these data to reason
about diagnosis, therapy, or prognosis. In this paper,
we present an analysis of the types of temporal
mismatches that exist in databases. Toformalize these
various approaches to timestamping, we provide a
foundational model of time. This model gives us the
semantics necessary to encode the temporal
dimensions of clinical data in legacy databases and to
transform such heterogeneous data into a uniform
temporal representation suitable for decision support.
We have implemented this foundational model as an
extension to our Chronus system, which provides
clinical decision-support applications the ability to
match temporal patterns in clinical databases. We
discuss the uniqueness ofour approach in comparison
with other research on representing and querying
clinical data with varying timestamp representations.

TEMPORAL MISMATCH IN DATABASES
Because clinical information is complex and
multifaceted, developers of clinical computer
applications are able to generate a wide variety of data
representations to suit their needs. Such diversity in
representations is readily apparent if one examines the
schemas of clinical databases. Data representations can
differ between databases because of the variety of
conceptual data models, the naming of elements in the
data schema, and the multitude of coding methods.
Such variations in data representations may be
necessary to satisfy the data-management needs of local
database users. These differences make difficult,
however, the integration and comparison of clinical data
with multiple data schemas.
Overcoming the heterogeneity, or mismatches,

present in database representations has become the
major effort of those researchers whose goals are either
(1) to integrate databases distributed across computer
networks [1] or (2) to reuse decision-support
applications across different databases [2]. One
important type of data heterogeneity that has not been
handled formally by these two types of approaches is
the temporal mismatch created by various

timestamping approaches for clinical data. Previous
methods can overcome some simple types of temporal
heterogeneity (such as naming differences among
timestamp attributes); however, these methods do not
resolve more complex mismatches that are present with
timestamps at varying time units or with the encoding
of temporal information as duration values (such as an
age attribute). Prior methods, in fact, have yet to
address thefoundational model oftime that is necessary
to create a unified temporal representation for data that
have temporal mismatches. Such a model of time is
essential, for example, to compare an age attribute in
one database schema with the birthdate timestamp in
another database. Unless such temporal mismatches are
resolved, users may face difficulty in integrating
temporal data from multiple databases and creating
computer applications that need a uniform temporal
view of clinical data [3] .

In our development of the Chronus system [4] - a
temporal querying method for clinical decision-support
applications - we have created a temporal data model
that can represent uniformly the temporal dimensions
of various types of clinical data. Our temporal scheme
requires that all data have interval timestamps. For
instant-based data, which we call events, the value of
the timepoints are equal, whereas for interval-based
data, which we call states, the timepoints are the
endpoints of the interval. For time-invariant data, we
can assign the start and end times to constant timepoint
values. Although all timepoint values in our interval-
based representation must have the same time-unit level
(such as minute), we have shown previously that this
representation can capture the uncertainty associated
with timestamps of varying time units [4] . Our
proposed timestamping scheme thus provides a unified
view of timestamps upon which decision-support
systems can base their temporal representations [5] .

More importantly, our scheme permits a closed set of
temporal operators that applications can use to
formulate temporal queries of arbitrary complexity [4].
Although Chronus can maintain a uniform view of

time in temporal querying, it does not provide a method
to map data in various timestamping schemes into its
canonical temporal representation. In this paper, we
present our method to overcome temporal mismatches.
We discuss first the types of temporal mismatches that
are present in clinical databases. We then establish a
foundational model of time, so that we can express
formally the semantic differences among various
timestamping approaches. Using mapping functions
that are based on this model, we have created a database
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method to transform data with heterogeneous temporal
representations into a canonical timestamped format.
We have implemented this method as an extension to
Chronus- which we call Synchronus. In conclusion,
we discuss the novelty of this approach in comparison
with related approaches to modeling data with complex
temporal representations.

TYPES OF TEMPORAL HETEROGENEITY
We have undertaken a review of the temporal
representations that are used for the data sources of
various decision-support systems or that are described
in the research literature. Our analysis reveals two
types of temporal heterogeneity: (1) representational
mismatch and (2) semantic mismatch. We present in
this section the various types of mismatches.
Representational Mismatch
Representational mismatch implies that the
timestamping approaches of two sets of data have
equivalent meaning, but different representations.
Temporal metrics. Many different metrics are

available to measure the value of discrete timepoints.
For example, we can store timestamps in the American
or the European format, or we can represent time values
with a 12- or 24-hour clock.
Timestamp name. The naming of timestamps

may differ among data representations. For example,
PROBLEM_START and MEDICATION_START are
attributes with equivalent semantics, since both store
the start of an interval-based datum. In a uniform
temporal representation, both attributes would have the
same name (such as START_TIME).
Timestamp structure. Databases can structure

timestamps in different ways: The value for a date-time
timepoint (such as 12/20/96 3:30 PM) can be
stored in a single attribute, or the components may be
stored as a separate date attribute (with value
12/20/96) along with a time attribute (with value
3: 3 0 PM).
These three types of representational mismatches

correspond to three standard classes of mismatches that
Kamel and Zviran [1] call scale conflict, name conflict,
and structural conflict, respectively. Prior methods to
resolve such data heterogeneity are applicable to these
types of temporal mismatches in clinical databases. We
shall not discuss these well-defined solutions in this
paper, but they are part of our computer-based method.
Semantic Mismatch
Semantic mismatch occurs if the timestamps for two
sets of data are related in semantics, but are not equal.
Timestamp method. Most databases store a single

timestamp for events and a pair of timestamps for
states. Some databases may not time stamp certain
data elements. Thus, not all timestamping approaches
fit a canonical interval-based representation.
Temporal granularity. The timestamps for

different clinical datum can be represented at different
time units (such as day, hour, and minute). We cannot
directly compare, however, timestamps of different time

units, because the former do not form a complete linear
ordering. Many database applications require such an
ordering as a prerequisite for temporal querying.
Temporal coding. Temporal information for

clinical data may not be encoded to reflect the data's
period of temporal validity. For example, one database
may model the start and end timestamps for a patient's
episode of chest pain, whereas another database may
store instead the start time of the chest pain along with
its duration. The latter timestamping scheme does not
create a data representation that permits direct interval-
based comparisons.
Temporal dimension. For some schemas, a

timestamp measures the datum's time of occurrence in
the real world, whereas, for other schemas, a timestamp
represents the time the value for the datum was entered
into the system. The former timestamp captures valid
time, whereas the latter stores transaction time. With
the exception of data from real-time electronic data
collection, these two timestamps do not have identical
values. For temporal reasoning in decision support, we
must distinguish which temporal dimension we need.

Unlike representational mismatches, these four types
of semantic differences have not been addressed
adequately by past approaches. This paper focuses on
the resolution of semantic mismatches, and shows how
a formal model of timestamps can encode and map
across such differences.

A FOUNDATIONAL MODEL OF TIME
We present in this section a temporal model that can
represent the complexity of timestamping semantics.
We then use this model to encode formally the various
legacy timestamping methods.
Timeline Model
The uniform timestamping scheme that we have

proposed for Chronus is based on a discrete model of
time. For our current research, we start instead with a
temporal model that permits time to be a continuous
linear variable; such values of time are equal to the real
numbers. Figure 1 shows the resulting timeline.
We can divide such a timeline into equally sized time

periods the duration of which varies by how fine or
coarse we wish to make a discrete time unit [6]. We
make the finest discretization equal to the smallest
time-unit level (such as a second) at which we can
represent timepoints in a database; as Figure 1
indicates, the set of finest time units on the timeline is
isomorphic to the set of integers on the real line. To
represent the next coarser time-unit level (such as a
minute), we group a fixed number of the finest time
units into a timepoint at that time-unit level. For
example, the first minute (minute 0) on a timeline is a
grouping of the first 60 time units at the level of
seconds. We continue to define coarser time-unit level
(such as an hour) as a grouping of time units at the
finer time-unit level. This temporal representation thus
establishes a hierarchical relationship between values of
different time-unit levels.
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With the timeline model, we can define primitive
temporal elements. A timepoint is the pair (t, p),
where t is an integer value at a time unit ,u. An
interval is a set of adjacent timepoints; we represent
this temporal element as the triplet (tl, t2, pu), where ti
and t2 are the values that bound the time period at time
unit pu. An example timepoint is (2, hour), which is
the third hour from the start of our timeline (the first
hour is at 0). According to the hierarchical time-unit
representation, this timepoint would encompass the
interval (120, 179, minute), or the 121st to the 180th
minutes on the timeline.
We define a duration to be the distance on the

timeline between two timepoints of the same time-unit
level. A duration is thus a pair, (d, u1), in which d is a
distance along the timeline measured at time unit p.
For example, the duration between the timepoints (7,
day) and (4, day) is (3, day). We allow d to be either
positive or negative depending on which direction we
measure the distance. A range corresponds to a triplet
(dl, d2, ji) such that dl and d2 are the distance values
on a timeline that bound a span of temporal durations
at time unit jP. With this notation, we specify an
example range of 2 to 4 hours as (2, 4, hour).
For any particular data element, the values of these

temporal elements can be based on timelines al6ng
either the valid- or transaction-time dimensions. Also,
we can transform these integer-based values into
corresponding real-world calendar-date values through
labeling functions that we do not detail here.
Timestamp Representations
With these formal definitions of time elements, we can
specify precisely the different timestamping schemes of
clinical databases. We categorize these approaches
based on whether clinical data are events or states.
Event Timestamping. The timestamping of

events (instantaneous data) occurs by one of four
approaches in the legacy databases that we examined.

1. Timepoint. In this common approach, a database
schema stamps an event with a single timepoint
attribute that captures the instant at which the value
occurred. We represent such a timestamp with the
timepoint (t, p). For some timestamping schemes, the

value of the time unit is stored explicitly; in such
cases, the value of yu can vary for each value of t. More
commonly, ,u will have one value for all timestamps of
that data element. For example, a database with a
timestamp called VISIT_DATE has day as an implicit
time unit.

2. Timepoint-duration pair. This approach
stamps an event's occurrence as a duration offset from a
reference timepoint; an age attribute is a prime example
of this approach. We can model such an attribute as a
person's birthdate timestamp by combining a duration
(d, ,u), where d is the age value and p is set at year,
with a timepoint (t, 1u), which corresponds to the
transaction timestamp at which the age value was
stored in the database. Thus, the duration (37, year)
stored with the timepoint (t, day) represents that a
person is 37 years of age at that reference timepoint.

3. Interval. This approach permits two timepoint
attributes as bounds for the time period during which an
event took place. A user thus has an interval of
uncertainty to capture an event's occurrence;
consequently, she could store the timing of a heart
attack within an 8-hour interval, instead of at a coarser
timepoint value (such as day). We represent this
timestamping method by an interval (tl, t2, i), where
tl and t2 are the values of the start and stop timepoints,
respectively, and ji is their time-unit level.

4. Nontemporal. As we noted previously, some
database may store no timestamps for an event. To
allow such events to be queried, we can provide a zero-
length interval, which has endpoints equal to a single
value (such as the current timepoint), or we can create
an interval of uncertainty (such as from negative
infinity to now) to provide temporal indeterminacy.

State Timestamping. For states (data that have a
significant duration), we find three timestamping
schemes in legacy databases.

1. Interval. In this representation, the temporal
dimensions of the state are stored as a pair of timepoint
attributes. Each of these timepoints is actually an
event. For example, the first timepoint of a medication
state captures the event of administering the drug,

time unit 3 | 0 1 1 1
time unit 2

time unit I

0 __

Figure 1. A timeline that shows the relationship between time as a continuous value and as sets of discretized
timepoints at various time-unit levels. Time is modeled here on the real line; as shown, these time values ar
divisible into sets of equally distant units. This figure shows a hypothetical set of time units, in which the finest
time unit (time unit 1) is the set of smallest divisions of the timeline (enumerated as timepoints numbered 0
through 7). We can group the timepoints at time unit 1 into timepoints at a coarser time-unit levels. Thus,
timepoint 0 at time unit 2 encompasses timepoints 0 and 1 at time-unit level 1. These hypothetical time-unit
divisions do not correspond to standard calendar-date granularities, but the example figure demonstrates the
hierarchical grouping of any discrete set of timepoint values into time units.
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whereas the second timepoint represents the event of
discontinuing the drug. Thus, we can specify this
timestamping approach as a pair of timepoints, [(tl,
/1i), (2, /12)]. The time units of these two timepoints
do not need to be equal.

2. Timepoint-duration pair. This type of state
timestamping stores the temporal validity of a state as
a pair of timepoint and duration attributes. For
example, a database may model the time period of a
patient's sore throat as occurring for 36 hours prior to a
clinic visit on day t on a timeline. We represent this
timestamp by the timepoint-duration pair [(t, day),
(-36, hour)]. As in this example, the duration value
can be negative, and the time units of the pair do not
have to be equivalent.

3. Nontemporal. In this approach, no timestamps
are stored explicitly for a state in the database. As with
events that have no timestamps, we require a
representation that makes explicit the temporal validity
of such data. We use a pair of timepoints, and assign
the temporal values appropriate timepoint constants
(such as negative infinity and now).
We use these formal notations of the timestamping

methods of events and states to encode precisely the
temporal dimensions of data in legacy databases. Once
we have established how a particular databases stores
timestamps for each data element, we can use mapping
functions to transform these data with temporal
mismatches into the canonical temporal representation.

TEMPORAL MAPPING FUNCTIONS
As noted, our Chronus system allows applications to
formulate temporal queries over a uniform temporal
representation that is strictly interval based. Thus, each
data element specified in a temporal query must be
stamped with an interval (tl, t2, y), where the value of
the time unit /1 is set at the query level [7]. For event-
and state-based data in the database that do not have this
particular timestamp representation, we define mapping
functions to overcome temporal mismatches prior to
performing the temporal query. We outline in this
section the seven mapping functions that are needed to
resolve semantic mismatches among temporal data.
These functions are based on our timeline model and
time-unit hierarchy.

1. Timepoint truncate. To transform a timepoint
at a time unit that is finer than the query's time unit,
we ascend the time-unit hierarchy to find the value of
the coarser timepoint. We define the function
timepoint-truncate((t, /1l), /12), where /1l is finer than
u2, to return the timepoint value at /2 that includes the
timepoint (t, /11). For example, timepoint-truncate
((137, minute), hour) returns (2, hour), as this minute
value occurs during the third hour.

2. Timepoint expand. The hierarchical
representation of the time units in Figure 1 shows that
a timepoint value at one time-unit level consists of an
interval of timepoints at a finer level. We use the

function timepoint-expand((t, /1l), /12), where /1l is
coarser than /12, to return the interval (uI, u2, /12) that
denotes the range of timepoints that comprise t at the
/2 time-unit level. With this function, we can

transform timepoints at time units coarser than the
canonical time unit. Thus, timepoint-expand((0, hour),
minute) equals the interval (0, 59, minute).

3. Interval approximate. After mapping with the
timepoint-expand function a timepoint at one time-unit
level into an interval at a finer level, we may wish to
have only a single timepoint at the finer time-unit
level. By this approximation, applications can create a
uniform temporal view that does not have the intervals
of uncertainty created by the timepoint-expand function.
We define the function interval-approximate((ul, u2,
,u), p), where (ui, u2, /1) is an interval and p is a value
between 0 and 100, to return the timepoint(t, /1), such
that t is equal to or closest to the value that is p
percentage of the interval. For example, interval-
approximate((120, 179, minute), 50) returns the
timepoint (150, minute), because this value is at the
50th percentage of the duration, or' at the midpoint, of
the interval (120, 179, minute).

4. Interval truncate. This function uses the
semantics of the timepoint-truncate function to map the
endpoints of intervals between various time-unit levels.

5. Interval expand. This function applies the
timepoint-expand semantics to interval endpoints.

6. Duration convert. In addition to the time-unit
transformations of timepoints and of intervals, we can
also map between durations of different time-unit
levels. If a duration value dl is measured precisely, we
can convert this value into a duration value d2 at a finer
time unit. The function duration-convert((d, pl), P2),
where /1l is coarser than /12, returns the product of d
and the number of timepoints at /12 that comprise a
timepoint at M1l. For example, duration-convert((3,
minute), second) equals the duration (180, second).

7. Duration expand. Some duration values in a
database are not precise distance measurements. For
example, an age value in a database that equals 37 years
does not imply an exact age for the patient; this value
is true both for a patient who became 37 on the date
that information was gathered and for a patient who is
one day less than 38 years in age. For such imprecise
durations, we transform their values into a range at a
finer time-unit level. The function duration-expand((d,
/1), /2), where /2 is finer than /1l, returns the range
(dl, d2, /12) such that dl and d2 are the bounds for d at
the coarser time-unit level. Thus, duration-expand((37,
year), month) equals the range (444, 455, month).
For data elements in a database that have semantic

mismatch in their temporal dimensions, we may need
more than one of these seven functions to transform
such data into the uniform temporal representation.
For example, to convert a timepoint-duration
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representation of the attribute age into an interval-based
format, we may need two functions. We use the
duration-expand function to convert the age in years
into a range of days, and we subtract each of the range
endpoints from the reference date at which the databse
stored the age. The result is a year-long interval of
days that bounds the birthdate. If we need instead a
single-date approximation of the birthdate as the start of
a person's life, we use next the interval-approximate
function to return a timepoint of time-unit day.

DISCUSSION
In this paper, we have presented a foundational model
of time, and have shown that it can unify different
timestamping schemes present in heterogeneous
clinical database. We have implemented this model by
extending our Chronus querying method [4]. We call
the extended system Synchronus, and it has two new
components: (1) a temporal metaschema that allows
developers to encode the timestamping method for
underlying data in the database; and (2) mapping
operators the semantics of which are based on our
temporal mapping functions. For each data element
that an application specifies in a temporal query,
Synchronus checks the metaschema to find its encoded
timestamping scheme. The system then applies the
mapping operators to overcome any mismatches in the
temporal dimensions of the base data. The resulting
data are uniformly interval stamped, so we can then use
the Chronus querying method on such data to verify the
temporal conditions in the query.
A straightforward comparison of our research with

other formal, published work on the modeling of
temporal data in clinical databases reveals that
Synchronus is novel in its ability to query existing
timestamping schemes. Our approach thus supports
the goals of integrating clinical data in heterogeneous
databases and of creating decision-support applications
that have a uniform interface to existing databases.
Other researchers [8, 9] have relied instead on new
database technologies to create highly expressive
temporal representations, so that users can model
explicitly the varying semantics of timestamps at the
database level. To use the complex temporal model in
the object-oriented methods of Combi et al. [8] or in
the constraint propagation network of Dolin [9] requires
the transfer and the reconfiguration of data into these
database schemas.
A closer comparison of our research with other

approaches reveals that we provide applications a
simpler temporal model for querying. A fundamental
assumption of our work is that we can satisfy the
temporal querying needs of applications with a
canonical interval-based schema that has timestamps at
a single time-unit level. In contrast, the temporal
querying method by Combi et al. [8] requires that
applications handle varying time units at the query
level, whereas applications that use the temporal
representation of Dolin must manage the intervals of

uncertainty present in its temporal scheme. Although
we have shown that we can extend our querying method
to permit such features [4], we do not find a wide
variety of applications that need such capabilities for
querying. Thus, our work focuses on establishing
sufficient expressivity rather than temporal complexity
in querying clinical data. We are currently testing
Synchronus within decision-support systems, and we
plan to verify in future papers that our foundational
temporal model is adequate for a variety of clinical
applications.
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